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Abstract—Segmentation of the right ventricle (RV) in magnetic
resonance imaging (MRI) sequences is critical for assessing
RV function. However, manual segmentation involves processing
hundreds of images per patient, making it a tedious and time-
consuming process. Recently, deep convolutional neural networks
have emerged as an effective solution for automating RV seg-
mentation in MRI sequences, substantially reducing manual
workload. Accurate segmentation of the RV is crucial for reliable
clinical applications. In this study, we demonstrate that transfer
learning using a pre-trained segmentation model from the Medi-
cal Open Network for Artificial Intelligence (MONAI) Model Zoo
significantly improves segmentation accuracy, as measured by the
Dice similarity coefficient (DSC) and 95th percentile Hausdorff
distance (HD95) scores, compared to manual annotations from
medical experts. Our approach increased DSC-based segmenta-
tion accuracy from 74.93% (pre-trained MONAI Zoo model) and
83.15% (same architecture trained on our data) to 84.91% on
1,994 test images acquired from seven patients. Furthermore, it
outperformed a state-of-the-art self-configuring network, nnU-
Net, which achieved an accuracy of 81.98% on the same dataset.
This study demonstrates the effectiveness of transfer learning in
improving segmentation accuracy for the proposed task.

Index Terms—Deep convolutional neural networks, right ven-
tricle, magnetic resonance imaging, cardiac disease, transfer
learning

I. INTRODUCTION

Cardiovascular disease remains the leading cause of mor-
tality worldwide [1], [2]. Magnetic resonance imaging (MRI)
is widely regarded as the reference standard for evaluating
cardiac structure and function [3]. In a typical cine cardiac
MRI examination, both the left and right ventricles are imaged;
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however, for many years, clinical focus has been placed pre-
dominantly on the left ventricle. The right ventricle (RV) has
often been referred to as the forgotten chamber [4]-[6], largely
due to the limited clinical emphasis placed on its functional
assessment. This historical oversight is now changing, as an
increasing number of clinical studies highlight the critical role
of RV function in diagnosing, prognosticating, and managing
a variety of cardiovascular and pulmonary conditions.

Despite its growing clinical significance, assessing the RV
remains challenging. Cine cardiac MRI typically generates
hundreds of images per patient, and deriving functional pa-
rameters from these images through manual contouring is
both time-consuming and labor-intensive for clinicians. Con-
sequently, the automation of RV assessment has attracted sig-
nificant research interest, offering the potential to dramatically
reduce the time and effort required for quantitative ventricular
analysis.

However, automated segmentation of the RV presents
unique difficulties compared to the left ventricle. The RV ’s
thin myocardial walls, highly irregular geometry, and com-
plex anatomical shape hinder accurate delineation. Traditional
image processing techniques have been applied to RV seg-
mentation [7], however, with limited success. In recent years,
deep learning—based approaches have emerged as a promising
alternative [8], [9], demonstrating improved accuracy and
robustness in automated RV segmentation, and paving the way
toward more efficient and reliable cardiac MRI analysis.

This study introduces a transfer learning—based approach
aimed at enhancing the accuracy of RV segmentation in
cardiac MRI. The proposed method leverages a pre-trained
deep learning model obtained from the Medical Open Network
for Artificial Intelligence (MONAI) Model Zoo, which serves



as a robust initialization point for the segmentation task.
This model is subsequently retrained using cine MRI image
sequences acquired from a local hospital, allowing it to adapt
to the specific imaging characteristics, scanner settings, and
patient population of the target clinical environment.
Experimental results demonstrate that this transfer learn-
ing strategy substantially improves the segmentation accuracy
of the neural network compared to the original pre-trained
model. Furthermore, the proposed approach outperforms a
leading state-of-the-art self-configuring segmentation frame-
work, nnU-Net, achieving higher accuracy in delineating the
RV’s complex anatomical boundaries. These findings highlight
the potential of transfer learning to bridge the gap between
general pre-trained deep learning models and the nuanced
requirements of institution-specific cardiac MRI datasets, ulti-
mately advancing automated RV analysis in clinical practice.

II. METHODOLOGY

The proposed methodology employs transfer learning using
a pre-trained model from the MONAI Zoo, specifically, the 3
Label Ventricular Segmentation model. This model retains the
original architecture and training protocol described in [10].
The model was retrained using datasets acquired from the
University of Alberta Hospital. The proposed study was ap-
proved by the Health Research Ethics Board at the University
of Alberta. The details of the dataset are given below.

A. Dataset

The retrospective dataset included 10,566 short-axis cardiac
MRI scans from 33 patients. Semi-automated RV segmentation
was performed using proprietary in-house software, with all
results manually verified and corrected by an experienced
pediatric cardiac radiologist. From the total collection, 8,576
images were allocated for training and validation, while the
remaining 1,994 short-axis MRI scans from 7 patients com-
prised the holdout test set. Table I shows the demographic
details of our dataset.

TABLE I
DEMOGRAPHIC CHARACTERISTICS OF STUDY POPULATION

Set Age (years) Weight (kg) Height (m)

Test 16.43 4+ 3.33 62.04 +11.82 1.622 4+ 0.092
Train 14.69 £ 5.75 48.20 £19.72 1.489 £ 0.195
Overall 15.06 £ 5.38 51.13 +£19.19 1.517 +£0.187

All scans were acquired using the SIEMENS Aera 1.5T scanner. Data

presented as mean + SD. Sex distribution: Test (2M:4F:10), Train
(13M:13F:00), Overall (15M:17F:10).

B. Data preprocessing and augmentation

Ground truth RV contours were rasterized into binary masks
and paired with their source MRI images. All data were
uniformly resized to 256 x 256 pixels to match network
input requirements. The intensity values of the image were
normalized to [0,1]. We implemented comprehensive data

augmentation including vertical and horizontal flipping, dis-
crete 90° rotations (90°, 180°, or 270°), contrast adjustment
through spatially smooth gamma fields (y € [0.25, 3]), random
affine transformations incorporating rotation, translation, and
scaling, and additive Gaussian noise with standard deviation
o = 0.05. This enhancement strategy was designed to improve
the robustness of the model while maintaining the anatomical
plausibility of cardiac MRI features.

C. Training configuration

We implemented a five-fold cross-validation strategy using
the pretrained UNet architecture as our base model, with
complete training/validation splits detailed in Fig. 1. The
holdout test set, comprising data from 7 patients (see Fig. 1),
was reserved for evaluating the final model. For each fold,
we adapted the pretrained model to our RV-focused dataset
by implementing a weighted Dice loss function with zero
weights for the left ventricle and myocardium regions while
maintaining the original architecture. The neural network was
retrained over 1000 epochs, with 400 iterations per epoch
and a batch size of 32, using the Adam optimizer with a
reduced learning rate of 0.0005 and cosine decay scheduling
for gradual rate reduction. The final model selection was based
on optimal validation Dice similarity coefficient (DSC).

Number of Patients

Fig. 1. Dataset partitioning scheme showing the five-fold cross-validation
splits (training/validation sets) and independent holdout test set used for final
model evaluation.

D. Inference configuration

Final model evaluation was conducted on the holdout test
set using an ensemble of the five models generated during the
cross-validation process. For each input slice, inference was
performed in parallel across all five networks. The resulting
softmax probability maps were then averaged to produce a
single prediction. This ensemble map underwent a series of
post-processing operations, including hole filling, retaining the
largest connected component, and removing minor artifacts, to
generate the final segmentation mask.

E. Baseline Methods

The performance of the proposed transfer learning approach
was benchmarked against three baseline methods: the original



pre-trained model from the MONAI Model Zoo [10], the same
architecture trained from scratch on our data, and the nnU-Net
framework [11]. The pre-trained MONAI model was evaluated
directly on the test set. The model trained from scratch fol-
lowed the same training configuration as our proposed method,
however, without initializing from pre-trained weights.

An nnUNet framework [11] was trained from scratch for
comparison with the proposed approach. The same training
and holdout validation sets used for the proposed method were
applied to nnUNet to ensure a fair evaluation. As a state-of-
the-art, self-configuring neural network, nnUNet automatically
determines many hyperparameters based on the data itself,
making it well-suited for benchmarking. Since nnUNet is
primarily designed for three-dimensional (3D) medical images,
the temporal frames of each short-axis MRI slice were stacked
along the depth axis, allowing the network to process cine
sequences as volumetric inputs and thereby capture motion
information across the cardiac cycle, together with their cor-
responding RV segmentation labels. Each fold of the built-
in five-fold cross-validation strategy was trained in parallel
on NVIDIA V100 GPUs, with early stopping applied to
prevent overfitting. The final model for evaluation was chosen
automatically using nnUNet’s find_best_model function.

F. Quantitative evaluation

The quantitative evaluation of the neural network predic-
tions was conducted against expert manual annotations using
the DSC, 95® percentile Hausdorff distance (HD95), and
reliability analysis.

1) DSC: The spatial overlap between the predicted segmen-
tation S, and the expert annotation S,, was quantified using
the DSC, defined as

L 28um
TS, + S

where S,,, denotes the intersection between the predicted and
manual segmentations. A value of DSC = 1 indicates perfect
agreement, whereas DSC = 0 indicates no overlap between
the two segmentations.

2) HD95: The Hausdorff distance (HD) [12] is a symmetric
measure of the spatial discrepancy between the automatic and
manual boundaries of the RV region. Let C, and C,,, denote
the automatic and manual contours, respectively. For each
point p, on C,, the minimum Euclidean distance to any point
pg'n on C,, is computed, and vice versa. The HD is then defined
as

DSC(Sa, Sm) (1)

HD(C,,C,,) = max ( max min d(p., p?,),
i

i (7)) ).
J 2

where d(-) denotes the Euclidean distance. Instead of the
absolute maximum, this study reports the 95" percentile of the
Hausdorff Distance, denoted as HD95, to reduce sensitivity to
outliers.

3) Reliability: The reliability quantifies the consistency or
dependability of a method in achieving a desired performance.
It reflects the likelihood that the method will meet or exceed
a specified quality threshold, thus serving as an indicator of
robustness and stability.

In the context of our segmentation task, reliability mea-
sures the probability that the DSC between the predicted
and ground-truth segmentations exceeds a given threshold
d € [0, 1]. Formally, this is expressed as:

R(d) = Pr(DSC > d) 3)

where Pr(-) denotes probability over the test set. The relia-
bility curve, obtained by computing R(d) across a range of
thresholds d, provides insight into how consistently a segmen-
tation method achieves various accuracy levels. Higher curves
indicate greater robustness and dependability in producing
accurate segmentations.

IITI. RESULTS

The performance of the proposed transfer learning approach
was compared with nnU-Net [11] trained from scratch on
the local dataset, the pre-trained model from the MONAI
Model Zoo, and the same model trained from scratch on the
local dataset. Predictions from all four neural networks were
evaluated against expert manual annotations using the DSC
and HD95. Table II reports the mean and standard deviation
values of the DSC and HDO9S5 for the RV segmentation for
all four neural networks. The results show that the proposed
approach outperforms the other three neural networks in terms
of both DSC and HD95.
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Fig. 2. The reliability (R(d) = Pr(Dice > d)) for the proposed method
and baseline methods. The proposed method yielded a higher reliability curve
than both MONAI Zoo variants (pre-trained and trained on our dataset only)
as well as nnU-Net, demonstrating the benefit of performing transfer learning
for the proposed segmentation problem.

The reliability analysis in Fig. 2 offers additional insight into
model consistency. The pre-trained MONAI Zoo model shows
the lowest reliability, with a reduced likelihood of achieving
higher Dice thresholds. Retraining the same architecture on
our dataset markedly improves reliability, not only surpassing
the pre-trained version but also outperforming nnU-Net across



TABLE II
QUANTITATIVE SEGMENTATION PERFORMANCE METRICS COMPARING AUTOMATED PREDICTIONS AGAINST EXPERT MANUAL ANNOTATIONS FOR RV
DELINEATION. RESULTS SHOW MEAN £ STANDARD DEVIATION FOR DICE SIMILARITY COEFFICIENT AND HD95 ACROSS 1,994 TEST SET SHORT-AXIS
MRI IMAGES FROM 7 PATIENTS.

Method

nnUNet [11]
MONAI Zoo Model (Pre-trained) [10]
MONAI Zoo Model (Trained on local data)

DSC (1) HDYS ()

Mean (%) + Std (%) Mean (mm) + Std (mm)
81.98 + 22.21 7.09 £ 14.49
74.93 + 31.17 12.78 £ 17.48
83.15 £ 23.32 7.71 £8.85
84.90 + 21.40 6.02 4+ 6.49

Proposed approach (Transfer learning)

much of the threshold range. The proposed transfer learning
approach achieves the highest reliability overall, particularly at
stricter thresholds, demonstrating its superior ability to deliver
high-quality segmentations consistently.
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Fig. 3. The performance of the proposed algorithm for the RV segmentation
at different short-axis slices, namely, the apical, mid-cavity, and basal slice
levels.

We analyzed the proposed method’s performance on dif-
ferent anatomical regions of the RV, namely, apical, mid-
cavity, and basal regions. As shown by the box plot in Fig. 3,
the performance is not uniform. The algorithm performed
exceptionally well on mid-cavity slices, achieving a high mean
Dice score of 95.58% with a standard deviation of just 1.98%.
The performance on apical slices was weaker; however, it
still yielded a respectable mean Dice score of 83.41% with
a standard deviation of 17.73%.

The primary challenge for the model was the basal region,
which yielded a considerably lower mean score of 76.57%
with a standard deviation of 28.58%. It also exhibited a much
wider distribution of results with numerous low-scoring out-
liers. The qualitative examples in Figure 4 visually confirm this
trend. The mid-cavity (middle row) and apical (top row) seg-
mentations are generally accurate, even at lower percentiles. In
contrast, the basal region (bottom row) is prone to significant
errors, particularly in lower-percentile cases, which explains
the decreased and more variable performance. This indicates
that while the model is robust for most of the ventricular
anatomy, the complexity of the basal slices is the main source
of segmentation inaccuracy in the proposed model.

A. Visual results

The predicted RV contours generated by the proposed
method, alongside the expert manual contours, are illustrated
on the MRI images at the apical, mid-cavity, and basal slices
in Fig. 4. The columns correspond to cases with DSC scores at
the 25%, 50, 75", and 100" percentiles. Overall, the results
demonstrate strong agreement between the automated and
manual contours across most images in the test set, indicating
the method’s robustness across different short-axis images.

IV. CONCLUSION

In this study, we present a transfer learning approach for RV
segmentation from MRI images. Our method leverages a pre-
trained neural network model from the MONAI Model Zoo,
which is then fine-tuned using MRI datasets acquired from a
local hospital. Evaluation on a holdout test set of 1,994 images,
using the DSC and HD95 metrics, demonstrates that the
proposed approach substantially enhances segmentation per-
formance compared to both the pre-trained MONAI Zoo model
and the same architecture trained on our dataset. The latter
already outperformed nnU-Net, while the proposed method
achieved the best overall performance. These results highlight
the advantages of adapting pre-trained neural network models
with local data, rather than applying them directly to domain-
specific tasks without retraining.

The clinical impact of this work lies in its potential to
automate the laborious task of RV segmentation, thereby
enabling more routine and efficient functional assessment.
The model is now being leveraged to generate a large-scale,
annotated dataset from our patient cohort. This effort will
directly enable our subsequent investigation into optimizing
imaging protocols by determining the minimum number of
short-axis slices required for accurate RV volume computation.

While the current results are promising, further work is
needed to ensure the model’s generalizability. A primary
limitation is the training cohort, which could be expanded to
ensure robustness across a broader spectrum of patient demo-
graphics and pathologies. Second, the model was developed
on a single-vendor dataset, and establishing its performance
on images from different manufacturers is a crucial step for
broader applicability. Addressing both patient diversity and
hardware variability is essential for developing a versatile tool.
Beyond enhancing robustness, future work could also focus
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Fig. 4. Comparison of RV segmentation contours between the proposed method (purple) and manual annotations (green). The figure shows representative
slices stratified by anatomical location, with the first, second, and third rows corresponding to apical, mid-cavity, and basal regions, respectively. For each
category, images at the 25%, 50™, 75%, and 100™ percentiles of the Dice score are displayed.

on expanding the model’s scope by applying similar transfer
learning techniques to segment long-axis views.
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